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iblHOTal(IiSF-npkiB0~FITCJ-l pe3yJIbTaTJ.d paWeTOBHa EUIeKTpOHHOtt BbFIHCJIHTeJIbHOtt MaIUkIHe 

nOnO6HbIX nOrpaHkIYHbIX CJIOeB Ha OCeCMMMeTpHYHbIX nOBepXHOCTfIX, BpaIUaIOIWXCH B 

HeOrpaHHYeHHOiHenO~BHtKHOi CpeRe.YCnOBHeM Cy~eCTBOBaHMHnO~O6HIdXCJIOeB JiBJIFIeTCR 

CTeneHHafIIaBEICIIMOCTb OTAlIElHhI o6paayroIuetipaCCTOrrHm OT OCIl BpalqeHHfI. 

PaCCW4TaHbI XapaKTepHCTHKR CKOpOCTHOrO II TenJIOBOrO IIOrpaHWIHbIX CJIOeB, pacnpene- 

JIeHllR CKOpOCTeZtH TeMnepaTyp. 

npH nOMOIQ&I nOJIyqeHHOr0 KJIaCCa TOqHbIX phIIeHEld CTpOATCH npI46JIMmeHHbI~ MeTOH 

paWeTa CKOpOCTHOrO I4 TenJIOBOrO nOrpaHWIHbIX CJIOeB Ha BpaIIlaIOIIJHXCJI nOBepXHOCTFIX 

npOM3BOJIbHOti (POpMbI nyTeM noA6opa Ha KamAOM yYaCTKe 6JIE13K08 nOBepXHOCTM CO 

CTeIIeHHOti 3aBMCHMOCTbIO paAMyCa OT AJIHHbI oBpa3yIoqeti c y=IeToM HenpepbIBHoro 

cpaqmaHm norpaHmKor0 CJI~R. 

Ha npmepe Bpa~aIon@ka c$epbI noKa3aKo, YTO pe3yJIbTaTbI paCYeTOB 3THM MeTOAOM 

COrJIaCyIOTCfi C AaHHbIMH ApyrHX paCYeTOB II C3KCnepIiMeHTaMLI. 

NOMENCLATURE 

4 

Y, 
Z, 

r, 

rrn9 

x0, 

m, 

Xl (x2); r1 (r2), 

x0, 
A. 

;s”’ 

% 21, w, 

T 
T f-09 

distance along the gene- 
rating line; 
transverse direction ; 
distance along the normal 
from a surface; 
distance from rotation 
axis ; 
maximum radius of a sur- 
face ; 
distance along rotating 
axis ; 
initial (or finite) surface 
radius [by formula (9)]; 
x,0 = x0: @l-m, r* = r: 
&/r-m, jj = X: r,,, 
co-ordinates of the be- 
ginning (end) of surface 
section; 
constant; 
constant; 
exponent ; 
(1 + 3mWm; 
components of velocity 
vector in x, y, z-direction; 
temperature; 
surface temperature ; 

T w, medium temperature ; 

2 
angular velocity; 
stream function; 

+= dr/dx; 
H(5); 5; F(5); G(5), defined by formulae (3); 
45); a dimensionless tempera- 

ture defined by formula 
(12); 

40, dimensionless tempera- 
ture at thermally insulated 
surface ; 

a, 

u; = s Edz; 
rw 

0 

co 

A, = 

0 

heat capacity at constant 
pressure; 
density; 
kinematic viscosity; 
heat conduction; 
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components of shear stress 
on a surface; 
specific heat flow; 
mean specific heat flow; 
disk values at the same 
quantities of r, w and 
physical constants; 
defined by formula (20); 

C m, coefficient of moment of 
shear stress; 

p*_ PYCp 
h ’ 

Prandtl number; 

NU = -.-- - ‘c- ----- 
X(T, - ,>’ 

Nusselt numbers; 

hv, Nusselt number for a disk; 

r2 w 
Re- ; 

Y 

Re,,z - “;*, Reynolds number. 

INTRODUCTION 

PROBLEMS of calculating the laminar flow and 
heat transfer near axisymmetric rotating surfaces 
arise in turbine const~ction and in other 
technical fields. Detailed investigations are con- 
ducted for the case of a rotating disk and cylinder 
(see [l]). Only integral methods are developed 
for surfaces of other shapes. For a sphere these 
are worked out by Howard [2] and Nigam [3], 
and for an arbitrary surface, by the author [4]. 
Baxter and Davies [S] have calculated heat 
transfer close to a rotating spherical surface. 
The author [4] has proposed an approximate 

method for calculating heat transfer for the 
arbitrary surfaces. Calculations turn out to be 
rather complex as they should satisfy a greater 
number of integral relations than in the case of 
the plane flow. For this purpose it is therefore 
reasonable to use similar exact solutions of 
boundary-layer equations which are, in them- 
selves of particular interest too. 

SOLUTION OF A VELOCITY BQUNDA~Y-LAYER 
EQUATION 

Consider the equations of a laminar boundary 
layer forming on an axisymmetric surface which 
rotates with a constant angular velocity in an 
infinite motionless medium 

Ceis [6] has shown that the similar solutions of 
system (1) exist only in the case when r(x) is a 
power function of (x + x0) 

r = A (x + .Y@ (2) 

In actual fact, if the stream function # is 
introduced so that (a$/&) = ru; (a$/axj .~ rw 
and if we take for nz :s 0 (i.e. k >> 0) 

u = rw F(5), r =: rw G(5) J 
then, equation (1) is reduced to the system of the 
ordinary differential equations 

F” ----. Fs - G2 + flHF’ 

G” = 2FG + ,BHG' 

H' + 2F -m- 0 

where 

(4) 

(5) 
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The boundary conditions will be 

F(0) -1 H(0) = 0, G(0) = 1, 

F(co) = G( CD) = 0 (6) 

The expression for 11’ becomes 

$& = ,‘JH + 2 (P - 1) WI) (7) 

The shape of the generating line of the 
which corresponds to (2) is defined 
equations 

x0 =T i 2/[1 - m2 A2 (x + x0)2(m-l)] dx 

r = A (x + ~0)~ 

surface 
by the 

1 
(8) 

J 

At 0 < m < 1 the integrand takes real values, 
starting with x0 = (rnA)l/l-m, that corresponds 
to the initial radius 

r. = mmil-m Al/l-m 
(9) 

and then the surface radius increases with 
x. At m > 1 (2 < p < 1) the surface starts with a 
zero radius and finishes at the radius defined by 
formula (9). From formula (7) it follows that all 
the surfaces with the same m are similar between 
themselves 

x,0 =_f(r,), x$ = xO: ,#&+n 
5 

r* = r: Al!l-m (IO) 

Thus, the dimensionless motion equations (4) do 
not depend on A. 

Note that close to the edges corresponding to 
the intial (or finite) radius ro of a surface, 
equations (1) are not valid. This also refers 
to very thin bodies when p approaches 314 or 
when A is small. 

Boundary value problem (4), (6) was solved 
by the trial and error method together with 
interpolation. Since the problem is non-linear, 
it is necessary to prescribe rather exact initial 
values of F’(0) and G’(0). For p = 1 (case of a 
rotating disc or cone) they may be taken from 
the solution by Cochran [7]; for /I close to 1 
from the approximate solution of the problem 
obtained by the method of integral relations 
(Appendix I), for other p values, by means of 
extrapolation using the values of F’(0) and 
G’(0) found earlier. 

The difficulty due to the integration range 
extending to infinity is overcome taking into 
account the fact that the unknown functions, 
starting with finite value 5 = <* ([* > 12) in 
fact do get values at infinity, i.e. 

F({*) = G(<*) = 0. 

Having accounted for 5* = 12, we find the 
solution for the increased values of [* and if the 
result does not change, then we finish the 
process of successive approximation. 

System (1) is integrated by the Merson modi- 
fication of the Runge-Kutta method [8] with 
accuracy E = IO-7 at each step. The conditions 
F(5*) = G([*) = 0 are satisfied with the same 
degree of accuracy. 

Integral characteristics 7 G dl, 7 Ga d[ of a 
0 0 

Table 1. 

s F’(0) -G’(O) --H(a) TG d5 1 G2d5 

1 0.510233 0.615922 0.884473 1.27144 0.672527 
2 0.465073 0.654174 0.579152 1.11620 0.609756 
3 0.434162 0.688635 0.443089 1.02530 0.567934 
4 0.411243 0.719243 0.363984 0.962485 0.537274 
5 0.393277 0.746662 0.311545 0.915179 0.513388 
6 0.378632 0.771498 0.273912 0.877614 0.493996 
7 0.366352 0.794224 0.245425 0.846681 0.477778 
8 0.355829 0.815201 0.223014 0.820534 0.463910 
9 0.346659 0.834704 0.204862 0.797985 0.451843 

10 0.338558 0.852950 0.189819 0.778229 0.441196 

_______ 
X-H.M. 
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boundary layer are defined whilst calculating 
these functions. To check the c&ulation the 

value 7 FG d5 is defined, and the relation is tested 
0 

TFGd<= -G’(O):2(1 +@. 
0 

This relation is satisfied with accuracy up to 
IO-‘. The basic quantities which characterize a 
boundary Iayer are given in Table I. Velocity 
charts are given in Fig. 1. 

02 
I 

F 01 

0 2 3 4 5 6 

c 

Fre. 1. Distribution of velocity vector components 
in a boundary layer. 

SOLUTION OF A THERMAL BOUNDARY- 
LAYER EQUATION 

The solution of the equation for a thermal 
boundary layer 

a~ aT Y a2T 
24 G + w y&=-jjj SF+ 

A. Z. SERAZETDINOV 

is sought in the form 

‘,“- T,+ f” 

Then, equation (11) is reduced to two ordinary 
differential equations 

1 
fi * 

” = /?Hu’ + 2Fu’ + 2F~r - (F’2 + G’2) 

(13) 

For the isothermal surface the boundary con- 
ditions will be 

7(O) - 1, 7(c0) = 0, a(0) = a(a) = 0 (14) 

And 

T- Tm r2 IJJ~ 

Tu, - Tm = +3 + CP(T~ _ Too) *CO (15) 

The second summand characterizes energy 
dissipation, whose intensity depends on the 
multiplier 

For the surface thermally insulated the boun- 
dary conditions become 

7’(O) =- T( Co) = 0 a’(0) 7 u(a) =: 0 (17) 

whence it follows that T E 0. 
Since equations (13) are linear, it is quite 

enough to have two samples with linear inter- 
polation to solve these equations numerically. 

Whilst calculating the unknown functions, the 
values of the integral characteristics of a boun- 
dary layer are determined: 

$ T(6) d5 

The value 3 FT dl is also calculated to check 
0 

the relation 
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$ Frd[= --7'(0):2/3Pr (18) 

As a control the validity of identities (11-4) 
and (11-5) are checked (see Appendix II). 

For illustration of high accuracy of the solu- 
tions of equations (13) and (4), some calculation 
results for /3 = 1 are compared with data of 
other calculations (Table 2). 

The basic quantities characterizing a heat 
boundary layer are given in Tables 3 to 6. 
Figure 2 illustrates typical temperature distribu- 
tions in a boundary layer. 

Calculations show (Fig. 3) that a shape of a 
surface (parameter p) slightly influences the 
dependence of the heat-transfer coefficient upon 
the Prandtl number. The multiplier Pro.4 may 
reflect this dependence only in some Prandtl 
number range. 

Table 2. Comparision with other calculations for ,3 = 1 
and Pr = 0.7 

Data 
Our 

calculation 
Rogers, sparrow, 
Lance Gregg 

[91 DOI 

F’(O) 0.510233 0.510233 0.510 

-G’(O) 0.615922 0.615922 0.6159 

---Ham) 0.88447 0.88446 0.8845 

1.27144 - 1.271 

$@di 0.672527 - 0.6721 

-r’(O) 0.323123 - 0.3231 

p,d, 2.10581 - 2.106 

- _~_. 

FIG. 2. Temperature distribution in a boundary layer at p = 3. 
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Table 3. Values of-~'(O) 

0.1 0.3 0.72 I 3 IO 30 

I 0.085154 0.185106 0.328573 0.396248 0.682580 I.13412 I.73103 2.68714 
2 0.10489 0.237935 0.418609 0.502801 0.855853 I .40883 2.13836 3.30632 
3 0.11759 0.271459 0.47555 I 0.570363 0.96667 I 1.58589 2.4022 I 3.70890 
4 0.12744 0.296343 0.518130 0.620963 I .05005 I.71973 2.60219 4.01464 
5 0.13574 0.316420 0.552567 0.661928 I.11783 1.82873 2.76535 4.26438 
6 0.14261 0.333381 0.581714 0.696627 I .17535 I.92144 2.90428 447722 
7 0.14836 0.348148 0.607126 0.726896 1.22561 2.00257 3.02594 4.66373 
8 0.15375 0.361279 0.629745 0.753850 I .27042 2.07498 3.13461 4.83040 
9 0.15895 0.373138 0.650192 0.778224 I.31099 2.14058 3.233 I 1 4.98152 

10 0.16324 0.383977 0.668895 0.800524 I.34813 2.20069 3.32341 5.12010 

-- 

x 0.1 0.3 10 30 

100 

100 

1 0.040334 0.109805 0.233695 0.30796 I 0.755363 1.93588 4.4203 1 
2 0.043097 0.117174 0.248721 0.327087 0.795482 2.01780 4.56399 
3 0.045489 0.123693 0.262063 0.344318 0.833965 2.10398 4.73332 
4 0.047577 0.129345 0.273852 0.359621 0.868949 2. I8502 4.89890 
5 0.049427 0.134376 0.284386 0.37333 1 0.90066 1 2.25975 5.06084 
6 0.051102 0.138918 0.293913 0.385749 0.929590 2.32864 5.19984 
7 0.052639 0.143083 0.302622 0.397112 0.956187 2.39241 5.33536 
8 0.054047 0.146884 0.3 10654 0.407600 0.980818 2.45176 5.46220 
9 0.055345 0.15043 0.318119 0.417352 1.00378 2.50729 5.58133 

IO 0.056572 0.153748 0.325100 0.426475 I .02530 2.55948 5.69370 

___. 

x 0.1 0.3 

Table 5. Values~of~ ~(5) d5 
0 

IO.6273 
10.8633 
11.1978 
I I .5442 
I I .8775 
12.1940 
12.4929 
12.7734 
13.0395 
13.2905 

1 8.5713 4.0988 2.0641 1.6533 0.89266 0.51899 0.33486 0.21373 
2 7.3960 3.1826 1.6032 1.2903 0.70723 0.41613 0.27040 0.17344 
3 6.8092 2.7714 1.4059 1.1334 0.62467 0.36915 0.24048 0.15452 
4 6.3885 2.5341 1.2879 1.0392 0.57435 0.34016 0.22189 0.14272 
5 6.0421 2.3706 1.2062 0.97381 0.53914 0.31974 0.20874 0.13432 
6 5.7963 2.2482 1.1448 0.9246 1 0.51250 0.30422 0.19871 0.12793 
7 5.6307 2.1516 1.0963 0.88564 0.49130 0.29182 0.19070 0.12280 
8 5.4580 2.0725 1.0564 0.85363 0.47384 0.28160 0.18407 0.11856 
9 5.2693 2GO60 1.0229 0.82663 0.45909 0.27294 0.17845 0.11496 

10 5.1629 1.9488 0.99399 0.80340 0.44636 0.26545 0.17359 0.11183 
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Table 6. Values ofq(0) 

0.3 0.72 1 3 10 30 100 

1 0.27198 0.34812 0.44746 
2 0.29 I66 0.35835 0.45072 
3 0.30152 0.36331 0.45220 
4 0.30700 0.36591 0.45304 
5 0.3101 I 0.36757 0.45358 
6 0.31263 0.36872 0.45395 
7 0.31503 0.36957 0.45423 
8 0.31644 0.37022 0.45445 
9 0.31695 0.37073 0.45461 

10 0.31821 0.37115 0.45475 

0~50000 0.75081 1.1946 1.8151 2.8381 
0.50000 0.73707 1.1563 1.7385 2.6910 
0.50000 0.73060 1.1378 1.7004 2.6159 
0.5OOOo 0.72685 1.1270 1.6779 2.5707 
0.5OoOO 0.72442 1.1199 1.6633 2.5406 
0.50000 0.72271 1.1149 1.6526 2.5192 
0.5OOOo 0.72144 1.1112 1.6447 2.5032 
0.50000 0.72047 1.1084 1.6387 2.4907 
0.5oooo 0.71969 1.1061 1.6338 2.4808 
0~50000 0.71906 1.1012 1.6299 2.4727 

tions,* then for the surface belonging to class 
(2) which passes through these points we have: 

r2 
_= l+szL&m 
r1 ( 1 

Since i = mr : (x + x0), then according to 
(19) (x + x0)-l = C2 v : w mr, Ai,, so that 
designating 

z= xs, A=%?! 
x2 - Xl 

(20) 

bl 

, ,,/N,! 1, ,I 
05 5 10 50 100 we obtained the formula 

Pr 

FIG. 3. Influence of the Prandtl number on heat transfer. (1= [(I +ZC2:m)m- l] :Z (21) 

APPROXIMATE METHOD FOR SOLVING AN 

ARBITRARY ROTATING SURFACE 

In order to approximately calculate a boun- 
dary layer on the arbitrary rotating surface with 
a monotonic increase in radius (3 > 0), we 
divide this surface into some small sections, 
choose a closely similar surface from class (2) 
for each surface. Calculation is based on change 
in the thickness of a boundary layer 

A set of curves /&!I) for different values of Z 
(Fig. 4) are constructed according to the known 
values of C(p). If xi, x2 rl r2 and value 
[A: (W/V)] at a point xi are known, then Z and (1 
may be calculated, and according to the curves 
L@; Z) the corresponding value of p and for it, 
Cs/m may be found. Thus, the value [A;;’ (w/v)]2 
at a point x2 is defined by the formula 

pi:)2 = (d;z)1 ;(I +ZC2:m) (22) 

m 

A, = 
SC 1 

2 2 dz = C(P) Jis) All the remaining parameters of a boundary 
layer are determined by the parameter 8. In 

0 particular, if the the values of Pr and 8 are 

C(p) =“s G2 d5 (19) 
prescribed, heat transfer near a rotating surface 

If xi and x2 are the ends of one of these set- 
* For plane flows Smith [ll] has proposed a similar 

method. 
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FIG. 4, Plots of /I and Z vs R. 

may be calculated. 3esides d, we may estimate 
shear stress along the surface 

the local heat-transfer coefficient 

Nzl = A (r,y’I_ Tm) = - 

the displacement thickness 8: as well as the 
thermal boundary-layer thickness St 

and distributions of temperatures and velocities 
in a boundary layer. 

The calculation results (at 6 = 0) of the 
ratios between mean specific heat fhrxes @,Q” at 
r, - T, = con&. from r = 0 and the given 
sphere radius r(x) to the appropriate disk values 
agree we11 with those obtained by Baxter and 
Davies [5]. The quantity 4 is defined by the 
formula : 

Thus, passing from one point to another it is 
possible to calculate the whole pattern of the 
development of a boundary layer OR the arbi- 
trary rotating surface at 3 > 0. 

CALCULATION EXAMPLE: ROTATING SPHERE 

Calculation results for a rotating sphere are As it should be expected (Fig. 3) the ratios of 
depicted in Fig. 5. Ratios of local values of the mean specific heat fluxes for the whole 
components of shear stress along the surface sphere to the appropriate values for a disk 
for a radius r(x) to the corresponding values for & : cjk = ?‘% : GO slightly depend upon the 
a disc with both the same radius and values Prandtl number (Table 7). 

o, p, Y agree well with the calculation results 
obtained by the integral method [4]. 

Inte~ation of a transverse ~on~ponent of 
shear stress gives the value of the coefficient 
C, = 3.35 fl2]. It should be noted that as in 
Nowarth’s calculation [2] the separation of a 
boundary layer far from the equator supposed 
by Nigam’s solutions [3] is not observed. This is 
confirmed by Bowden and Lord% ]12] experi- 
ments. This calculation as well as others [2], 143 
and experiments [13], [16] show that the boun- 
dary layer increases from poles to the equator. 

FIG. 5. Distribution of components of shear stress 
and heat ffux along generating line of rotating 
sphere: t. calculation by the present method; 2, by 
the method of integral relations [4]. 3. calculated by 

Baxter and Davies [5] for Pr -+ ~0. 
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--. 
Table 7. Values of Nu/Nu” for a sphere 

Pr 0.72 1 10 100 co 

KG 4m 
_z_ 

KG0 4m0 
0.843 0.840 0.822 0.815 0.75 

Let us compare (Fig. 6) the results obtained 
with the experiments [ 131 for air (Pr = 0.72). 
According to Tables 3 to 7 by= 0.276 Reo’j, 
that is below the experimental data. 

200, I 

20 1 
10000 

, x1,,.’ 
iooooo 

Re 

FIG. 6. Dependence of Nu upon Rem for a sphere: 
1. experiments of Kreith and his co-workers [13] ; 
2. theoretical dependence; 3. calculation using 
Cobb and Saunders’ data [15]; 4. calculations using 

Young’s data [14]. 

This discrepancy may be in part due to the 
effect of natural convection, especially with 
rotation about the vertical axis (despite the fact 
that experiments at small Grashof numbers were 
used). Therefore, if Young’s experimental data 
[14] are used for GO when the disk also rotates 
about the vertical axis, then a better agreement 
with the data by Kreith and his co-workers is 
achieved. The intermediate value is obtained by 
using the experimental formula of Cobb and 
Saunders [15] for GO with the horizontal 
rotation axis. 

Some intensification of heat transfer which is 
not taken into account in calculations may be 
expected from ejection of a jet at the equator. 
It is unknown, how much the isothermal con- 
dition of a sphere is maintained, since non- 
isothermal conditions may also influence heat 
transfer. 

APPENDIX I 

Approximate Calculation of Velocity Boundary 
Layer 

We solve system (4)-(6) by the method of 
integral relations. We give the unknown func- 
tions in the form of polynomials in t = [/CO, 
(where 50 is the dimensionless thickness of a 
boundary layer), which satisfy the boundary 
conditions of the problem 

F(0) = G(0) = 1, 

F(1) = F’(1) = G(1) = G’(1) = 0, 

G”(0) = 0, F”(0) = - 1. 

Then, 

F = (1 - t)2 (At + 2 ht2 - 4 t2)[; 
G = & (2 + t) (1 - t)2 > 

(I-1) 

Upon integrating equation (4) along a boundary 
layer, the integral relations are obtainable: 

-F’(O) =(1+2@7 Fsd[-- Gad5 
0 0 

-G’(O) = (2 + 2j3) F FG dl 
0 I 

U-2) 

Upon substituting (I-l) into them, the system of 
equations is obtained to define A and 50 

h = - (1 + 28) [0*0301 ha - 0.00675 h + 
0.000397] r;; + 0.2357 

t;; = 3 : [2 (2 + ,f3) (0.0607 h - 0*00564)] (I-3) 

whence we have for X which has the physical 
meaning, 

A = [1*991 + 0.675a + 1/(0*737 + 0*1234a - 
0*02236a2)] : (12.14 + 6.02a) 

where 

3 1+2/3 
a=4 1+/3 

When h is defined by this equation, it is possible 
to find 50 and the corresponding values of the 
unknown quantities 

F’(0) = h lo G’(0) = - Q [,l (I-5) 

Ratios of these quantities to the appropriate 
values for /3 = 1 (rotating disk) 

F’@;Pl A50 
F’(O; 1) (h50)/+1 

WO ; PI Ko),Y-I --=- 
G’(O; 1) 50 (I-6) 
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agree well with exact ones up to ,G m 2. There- 
fore, if F’(0; 1) and G’(0; 1) are taken from 
[7], rather a good approximation for F’(0) and 
G’(0) from ,L3 = 1 to /3 = 2 is found by these 
formulae. 

APPENDIX II 

Some Solutions qf Thermal Boundary-Iaye, 
Equations at Pr = 1 

At Pr = 1 the second equation of system (13) 
becomes : 

/3o’H + 2Fu = u” + (F’” + G’2) (II-l) 

If the first two equations of system (4) multiplied 
by F and (G + K), respectively, are added to 
this equation, we have: 

Hj?(u+~F2+~G2+KG)+2F(u+~F2+ 

4 G2 f KG) = (u + 4 F2 + fr G2 + KG) (11-2) 

The solution of this equation is 

u + 4 (P + G”) f KG = 0 (H-3) 

where K is defined from the boundary conditions 

For the isothermal surface u(O) = (r(a) = 0, 
therefore, K = -+, i.e. 

u = 4 G - + (F2 + G2) (11-4) 

For the surface thermally insulated u’(O) = 
u( co) = 0, therefore, K = - 1, i.e. 

al = G - $ (F2 + G2) (11-5) 
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Abstract-Results of calculations are obtained for similar boundary layers on axisymmetric surfaces 
rotating in an infinite motionless medium. An electronic computer was employed. The power dependence 
of the distance from the rotation axis on the length of the generating line is the condition of the existence 
of similar layers. 

Characteristics of velocity and thermal boundary layers, velocity and temperature distributions are 
calculated.. 

Using the class of exact solutions obtained, an approximate method for calculating velocity and 
thermal boundary layers on arbitrary-shaped rotating surfaces is developed. The method employed is to 
choose on each section a closely approximate surface with power dependence of radius on the component 
length; taking into account the continuous consolidation of the boundary layer. 

Using, as an example the case of a rotating sphere, it is shown that the calculation results obtained 
with this method agree with both the data of other calculations and experiment. 
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R&mt&Les rtsultats des calculs sont obtenus pour des couches limites en similitudesur dessurfacesde 
rCvolution tournant dans un milieu infini immobile. Un calculateur Clectronique a&employ&. Lavaria- 
tion de la distance de I’axe de rotation sous la forme d’une puissance de la longueur dela gCnCratriceest la 
condition d’existence de couches en similitude. 

Les caract~ristiques des couches limites dynamiques et thermiques, les distriblitions de vitesse et de 
temperature sont caict&es. 

En employant la classe de solutions exactes obtenue, une mCthode approchCe pour calculer les 
couches limites dynamiques et thermiques sur des surfaces tournantes de forme arbitraire est exposCe. 
La mCthode employCe consiste B choisir, sur chaque section, une surface approchhe avec une variation 
du rayon selon une puissance de la longueur, en tenant compte de I’augmentation continue de la 
couche limite. 

En prenant comme exempie le cas de la sph&re en rotation, on montre que les r&hats des calculs 
obtenus avec cette methode sont en accord & la fois avec ceux d’autres calculs et ceux de l’exp&ience. 

Zusammenfassung-Fiir gleichartige Grenzschichten aufachsensymmetrischen Oberflgchen, die ineinem 
unendlichen, ruhigen Medium rotieren, werden mit einem Elektronenrechner Ergebnisse erstellt. 
Die Bedingung fiir das Vorhandensein gleichartiger Grenzschichten ist die Potenzabhsngigkeit des 
Achsabstandes von der tinge der erzeugenden Strecke. 

Berechnet werden Kenngrijssen von Ge~hwindigkeit und thermischer Grenzschicht und die 
Geschwindigkeits- und Temperaturverteilung. Unter Beniitzung der erzielten, genauen L&ungen 
wird eine Nlherungsmethode zur Berechnung der Geschwindigkeit und der thermischen Grenzschicht 
auf beliebig gestalteten rotierenden Oberfllchen entwickelt. Die verwendete Methode w%hlt fiir jeden 
Abschnitte eine sehr stark angenlherte Oberfllche, deren Radius vondemLLngenantei1 iibereinepotenz 
abhtingig ist. Dabei wird eine dauernde Ausbildung der Grenzschicht mit beriicksichtigt. 

Am Beispiei fiir den Fall der rotierenden Kugel wird gezeigt, dass die mit dieser Methode erzielten 
R~henergebnisse sowohl mit den Werten anderer Berechnungen als such mit experintentellen 

Messungen ~bereinstiinmen. 


